Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Neurosci Lett ; : 137727, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38467270

RESUMO

Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP + oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in ∼ 100 % increase in free zinc in pre-oligodendrocytes but, paradoxically more modest ∼ 60 % increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.

2.
J Neurochem ; 167(2): 277-295, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37702109

RESUMO

Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.


Assuntos
Cobre , Ferredoxinas , Humanos , Cobre/farmacologia , Ferredoxinas/metabolismo , Ferredoxinas/farmacologia , Astrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Zinco/farmacologia , Neurônios/metabolismo , Células Cultivadas
3.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546881

RESUMO

Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.

4.
Front Cell Neurosci ; 16: 905299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722615

RESUMO

The sodium-dependent glutamate transporter GLT-1 (EAAT2, SLC1A2) has been well-described as an important regulator of extracellular glutamate homeostasis in the central nervous system (CNS), a function that is performed mainly through its presence on astrocytes. There is, however, increasing evidence for the expression of GLT-1 in CNS cells other than astrocytes and in functional roles that are mediated by mechanisms downstream of glutamate uptake. In this context, GLT-1 expression has been reported for both neurons and oligodendrocytes (OLGs), and neuronal presynaptic presence of GLT-1 has been implicated in the regulation of glutamate uptake, gene expression, and mitochondrial function. Much less is currently known about the functional roles of GLT-1 expressed by OLGs. The data presented here provide first evidence that GLT-1 expressed by maturing OLGs contributes to the modulation of developmental myelination in the CNS. More specifically, using inducible and conditional knockout mice in which GLT-1 was deleted in maturing OLGs during a peak period of myelination (between 2 and 4 weeks of age) revealed hypomyelinated characteristics in the corpus callosum of preferentially male mice. These characteristics included reduced percentages of smaller diameter myelinated axons and reduced myelin thickness. Interestingly, this myelination phenotype was not found to be associated with major changes in myelin gene expression. Taken together, the data presented here demonstrate that GLT-1 expressed by maturing OLGs is involved in the modulation of the morphological aspects associated with CNS myelination in at least the corpus callosum and during a developmental window that appears of particular vulnerability in males compared to females.

5.
Neuropharmacology ; 196: 108719, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273389

RESUMO

Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Doença de Huntington/metabolismo
6.
Front Cell Neurosci ; 15: 666798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935656

RESUMO

Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.

7.
Neurochem Int ; 144: 104896, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159978

RESUMO

Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.


Assuntos
Comportamento Aditivo/metabolismo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comportamento Aditivo/psicologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
Front Neurosci ; 14: 778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792905

RESUMO

This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.

9.
Neurochem Res ; 45(6): 1420-1437, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144526

RESUMO

Expression of the glutamate transporter GLT-1 in neurons has been shown to be important for synaptic mitochondrial function in the cerebral cortex. Here we determined whether neuronal GLT-1 plays a similar role in the hippocampus and striatum, using conditional GLT-1 knockout mice in which GLT-1 was inactivated in neurons by expression of synapsin-Cre (synGLT-1 KO). Ex vivo 13C-labelling using [1,2-13C]acetate, representing astrocytic metabolism, yielded increased [4,5-13C]glutamate levels, suggesting increased astrocyte-neuron glutamine transfer, in the striatum but not in the hippocampus of the synGLT-1 KO. Moreover, aspartate concentrations were reduced - 38% compared to controls in the hippocampus and the striatum of the synGLT-1 KO. Mitochondria isolated from the hippocampus of synGLT-1 KO mice exhibited a lower oxygen consumption rate in the presence of oligomycin A, indicative of a decreased proton leak across the mitochondrial membrane, whereas the ATP production rate was unchanged. Electron microscopy revealed reduced mitochondrial inter-cristae distance within excitatory synaptic terminals in the hippocampus and striatum of the synGLT-1 KO. Finally, dilution of 13C-labelling originating from [U-13C]glucose, caused by metabolism of unlabelled glutamate, was reduced in hippocampal synGLT-1 KO synaptosomes, suggesting that neuronal GLT-1 provides glutamate for synaptic tricarboxylic acid cycle metabolism. Collectively, these data demonstrate an important role of neuronal expression of GLT-1 in synaptic mitochondrial metabolism in the forebrain.


Assuntos
Ácido Aspártico/metabolismo , Corpo Estriado/metabolismo , Transportador 2 de Aminoácido Excitatório/deficiência , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Animais , Corpo Estriado/ultraestrutura , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/ultraestrutura , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Sinapses/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 116(43): 21800-21811, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591195

RESUMO

The excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the brain expressed predominantly in astrocytes and at low levels in neurons and axonal terminals. EAAT2 expression is reduced in aging and sporadic Alzheimer's disease (AD) patients' brains. The role EAAT2 plays in cognitive aging and its associated mechanisms remains largely unknown. Here, we show that conditional deletion of astrocytic and neuronal EAAT2 results in age-related cognitive deficits. Astrocytic, but not neuronal EAAT2, deletion leads to early deficits in short-term memory and in spatial reference learning and long-term memory. Neuronal EAAT2 loss results in late-onset spatial reference long-term memory deficit. Neuronal EAAT2 deletion leads to dysregulation of the kynurenine pathway, and astrocytic EAAT2 deficiency results in dysfunction of innate and adaptive immune pathways, which correlate with cognitive decline. Astrocytic EAAT2 deficiency also shows transcriptomic overlaps with human aging and AD. Overall, the present study shows that in addition to the widely recognized astrocytic EAAT2, neuronal EAAT2 plays a role in hippocampus-dependent memory. Furthermore, the gene expression profiles associated with astrocytic and neuronal EAAT2 deletion are substantially different, with the former associated with inflammation and synaptic function similar to changes observed in human AD and gene expression changes associated with inflammation similar to the aging human brain.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/patologia , Transportador 2 de Aminoácido Excitatório/deficiência , Transtornos da Memória/patologia , Neurônios/metabolismo , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/genética , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/fisiologia , Humanos , Cinurenina/metabolismo , Masculino , Transtornos da Memória/genética , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
11.
Neurosci Lett ; 707: 134247, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059767

RESUMO

Zinc is an essential dietary micronutrient that is abundant in the brain with diverse roles in development, injury, and neurological diseases. With new imaging tools and chelators selectively targeting zinc, the field of zinc biology is rapidly expanding. The importance of zinc homeostasis is now well recognized in neurodegeneration, but there is emerging data that zinc may be equally important in white matter disorders. This review provides an overview of zinc biology, including a discussion of clinical disorders of zinc deficiency, different zinc pools, zinc biomarkers, and methods for measuring zinc. It emphasizes our limited understanding of how zinc is regulated in oligodendrocytes and white matter. Gaps in knowledge about zinc transporters and zinc signaling are discussed. Zinc-induced oligodendrocyte injury pathways relevant to white matter stroke, multiple sclerosis, and white matter injury of prematurity are reviewed and examples of zinc-dependent proteins relevant to myelination highlighted. Finally, a novel ratiometric zinc sensor is reviewed, revealing new information about mobile zinc during oligodendrocyte differentiation. With a better understanding of zinc biology in oligodendrocytes, new therapeutic targets for white matter disorders may be possible and the necessary tools to appropriately study zinc are finally available.


Assuntos
Substância Branca/metabolismo , Zinco/fisiologia , Animais , Morte Celular , Proliferação de Células , Corantes Fluorescentes , Homeostase , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Zinco/análise , Zinco/deficiência
12.
Ann Neurol ; 85(6): 921-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30937933

RESUMO

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count. ANN NEUROL 2019;85:921-926.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Transportador 2 de Aminoácido Excitatório/genética , Variação Genética/genética , Sequência de Aminoácidos , Ceftriaxona/uso terapêutico , Pré-Escolar , Epilepsia Generalizada/tratamento farmacológico , Transportador 2 de Aminoácido Excitatório/química , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Estrutura Secundária de Proteína
13.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30926746

RESUMO

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Ácido Aspártico/metabolismo , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Consumo de Oxigênio/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinaptossomos/metabolismo
14.
Neurochem Int ; 123: 85-94, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29709465

RESUMO

GLT-1 is the major glutamate transporter in the brain, and is expressed in astrocytes and in axon terminals in the hippocampus, cortex, and striatum. Neuronal GLT-1 accounts for only 5-10% of total brain GLT-1 protein, and its function is uncertain. In HD, synaptic dysfunction of the corticostriate synapse is well-established. Transcriptional dysregulation is a key feature of HD. We hypothesized that deletion of neuronal GLT-1, because it is expressed in axon terminals in the striatum, might produce a synaptopathy similar to that present in HD. If true, then some of the gene expression changes observed in HD might also be observed in the neuronal GLT-1 knockout. In situ hybridization using 33P labeled oligonucleotide probes was carried out to assess localization and expression of a panel of genes known to be altered in expression in HD. We found changes in the expression of cannabinoid receptors 1 and 2, preproenkaphalin, and PDE10A in the striatum of mice in which the GLT-1 gene was inactivated in neurons by expression of synapsin-Cre, compared to wild-type littermates. These changes in expression were observed at 12 weeks of age but not at 6 weeks of age. No changes in DARPP-32, PDE1B, NGFIA, or ß-actin expression were observed. In addition, we found widespread alteration in expression of the dynamin 1 gene. The changes in expression in the neuronal GLT-1 knockout of genes thought to exemplify HD transcriptional dysregulation suggest an overlap in the synaptopathy caused by neuronal GLT-1 deletion and HD. These data further suggest that specific changes in expression of cannabinoid receptors, preproenkephalin, and PDE10A, considered to be the hallmark of HD transcriptional dysregulation, may be produced by an abnormality of glutamate homeostasis under the regulation of neuronal GLT-1, or a synaptic disturbance caused by that abnormality, independently of mutation in huntingtin.


Assuntos
Transportador 2 de Aminoácido Excitatório/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Homeostase/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Psychopharmacology (Berl) ; 235(5): 1371-1387, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29468294

RESUMO

RATIONALE: GLT-1 is the major glutamate transporter in the brain and is expressed predominantly in astrocytes but is also present in excitatory axon terminals. To understand the functional significance of GLT-1 expressed in neurons, we generated a conditional GLT-1 knockout mouse and inactivated GLT-1 in neurons using Cre-recombinase expressed under the synapsin 1 promoter, (synGLT-1 KO). OBJECTIVES: Abnormalities of glutamate homeostasis have been shown to affect hippocampal-related behaviors including learning and memory as well as responses to drugs of abuse. Here, we asked whether deletion of GLT-1 specifically from neurons would affect behaviors that assessed locomotor activity, cognitive function, sensorimotor gating, social interaction, as well as amphetamine-stimulated locomotor activity. METHODS/RESULTS: We found that the neuronal GLT-1 KO mice performed similarly to littermate controls in the behavioral tests we studied. Although performance in open field testing was normal, the acute locomotor response to amphetamine was significantly blunted in the synGLT-1 KO (40% of control). We found no change in amphetamine-stimulated extracellular dopamine in the medial shell of the nucleus accumbens, no change in electrically stimulated or amphetamine-induced dopamine release, and no change in dopamine tissue content. CONCLUSIONS: These results support the view that GLT-1 expression in neurons is required for amphetamine-induced behavioral activation, and suggest that this phenotype is not produced through a change in dopamine uptake or release. Although GLT-1 is highly expressed in neurons in the CA3 region of the hippocampus, the tests used in this study were not able to detect a behavioral phenotype referable to hippocampal dysfunction.


Assuntos
Anfetamina/farmacologia , Dopamina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Deleção de Genes , Locomoção/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/deficiência , Transportador 2 de Aminoácido Excitatório/genética , Medo/efeitos dos fármacos , Medo/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Relações Interpessoais , Locomoção/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fenótipo
16.
ACS Sens ; 3(2): 458-467, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29431427

RESUMO

Despite the significant advantages of two-photon excitation microscopy (TPEM) over traditional confocal fluorescence microscopy in live-cell imaging applications, including reduced phototoxicity and photobleaching, increased depth penetration, and minimized autofluorescence, only a few metal ion-selective fluorescent probes have been designed and optimized specifically for this technique. Building upon a donor-acceptor fluorophore architecture, we developed a membrane-permeant, Zn(II)-selective fluorescent probe, chromis-1, that exhibits a balanced two-photon cross section between its free and Zn(II)-bound form and responds with a large spectral shift suitable for emission-ratiometric imaging. With a Kd of 1.5 nM and wide dynamic range, the probe is well suited for visualizing temporal changes in buffered Zn(II) levels in live cells as demonstrated with mouse fibroblast cell cultures. Moreover, given the importance of zinc in the physiology and pathophysiology of the brain, we employed chromis-1 to monitor cytoplasmic concentrations of labile Zn(II) in oligodendrocytes, an important cellular constituent of the brain, at different stages of development in cell culture. These studies revealed a decrease in probe saturation upon differentiation to mature oligodendrocytes, implying significant changes to cellular zinc homeostasis during maturation with an overall reduction in cellular zinc availability. Optimized for TPEM, chromis-1 is especially well-suited for exploring the role of labile zinc pools in live cells under a broad range of physiological and pathological conditions.


Assuntos
Complexos de Coordenação/análise , Corantes Fluorescentes/química , Oligodendroglia/química , Piridinas/química , Zinco/análise , Animais , Diferenciação Celular , Células Cultivadas , Complexos de Coordenação/química , Citoplasma/química , Corantes Fluorescentes/síntese química , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Células NIH 3T3 , Piridinas/síntese química , Análise de Célula Única , Espectrometria de Fluorescência , Zinco/química
17.
Exp Neurol ; 300: 22-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29106981

RESUMO

The inability of axons to regenerate over long-distances in the central nervous system (CNS) limits the recovery of sensory, motor, and cognitive functions after various CNS injuries and diseases. Although pre-clinical studies have identified a number of manipulations that stimulate some degree of axon growth after CNS damage, the extent of recovery remains quite limited, emphasizing the need for improved therapies. Here, we used traumatic injury to the mouse optic nerve as a model system to test the effects of combining several treatments that have recently been found to promote axon regeneration without the risks associated with manipulating known tumor suppressors or oncogenes. The treatments tested here include TPEN, a chelator of mobile (free) zinc (Zn2+); shRNA against the axon growth-suppressing transcription factor Klf9; and the atypical growth factor oncomodulin combined with a cAMP analog. Whereas some combinatorial treatments produced only marginally stronger effects than the individual treatments alone, co-treatment with TPEN and Klf9 knockdown had a substantially stronger effect on axon regeneration than either one alone. This combination also promoted a high level of cell survival at longer time points. Thus, Zn2+ chelation in combination with Klf9 suppression holds therapeutic potential for promoting axon regeneration after optic nerve injury, and may also be effective for treating other CNS injuries and diseases.


Assuntos
Axônios/fisiologia , Técnicas de Silenciamento de Genes/métodos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Zinco/metabolismo , Animais , Quelantes/metabolismo , Quelantes/farmacologia , Etilenodiaminas/metabolismo , Etilenodiaminas/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/terapia
18.
Proc Natl Acad Sci U S A ; 114(2): E209-E218, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28049831

RESUMO

Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.


Assuntos
Regeneração Nervosa , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/fisiologia , Retina/fisiologia , Zinco/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas de Transporte de Cátions , Quelantes/farmacologia , Etilaminas/farmacologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridinas/farmacologia , Ácidos Sulfanílicos/farmacologia
19.
Neurochem Int ; 98: 19-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27129805

RESUMO

Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate homeostasis associated with normal functions, neurodegeneration, and response to drugs.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo
20.
Neurogenetics ; 17(1): 11-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26395884

RESUMO

Mutations in the KCNA1 gene are known to cause episodic ataxia/myokymia syndrome type 1 (EA1). Here, we describe two families with unique presentations who were enrolled in an IRB-approved study, extensively phenotyped, and whole exome sequencing (WES) performed. Family 1 had a diagnosis of isolated cataplexy triggered by sudden physical exertion in multiple affected individuals with heterogeneous neurological findings. All enrolled affected members carried a KCNA1 c.941T>C (p.I314T) mutation. Family 2 had an 8-year-old patient with muscle spasms with rigidity for whom WES revealed a previously reported heterozygous missense mutation in KCNA1 c.677C>G (p.T226R), confirming the diagnosis of EA1 without ataxia. WES identified variants in KCNA1 that explain both phenotypes expanding the phenotypic spectrum of diseases associated with mutations of this gene. KCNA1 mutations should be considered in patients of all ages with episodic neurological phenotypes, even when ataxia is not present. This is an example of the power of genomic approaches to identify pathogenic mutations in unsuspected genes responsible for heterogeneous diseases.


Assuntos
Ataxia/genética , Cataplexia/genética , Canal de Potássio Kv1.1/genética , Mutação , Mioquimia/genética , Adolescente , Adulto , Criança , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...